Residual dipolar couplings: synergy between NMR and structural genomics.
نویسندگان
چکیده
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.
منابع مشابه
CABM Symposium Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction
Residual dipolar couplings provide significant structural information for proteins in the solution state, which makes them attractive for the rapid determination of protein structures. While dipolar couplings contain inherent structural ambiguities, these can be reduced via an overlap similarity measure that insists that protein fragments assigned to overlapping regions of the sequence must hav...
متن کاملNuclear magnetic resonance in the era of structural genomics.
Current interests in structural genomics, and the associated need for high through-put structure determination methods, offer an opportunity to examine new nuclear magnetic resonance (NMR) methodology and the impact this methodology can have on structure determination of proteins. The time required for structure determination by traditional NMR methods is currently long, but improved hardware, ...
متن کاملA dipolar coupling based strategy for simultaneous resonance assignment and structure determination of protein backbones.
A new approach for simultaneous protein backbone resonance assignment and structure determination by NMR is introduced. This approach relies on recent advances in high-resolution NMR spectroscopy that allow observation of anisotropic interactions, such as dipolar couplings, from proteins partially aligned in field ordered media. Residual dipolar couplings are used for both geometric information...
متن کاملTowards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings.
We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly (15)N/(13)C-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assi...
متن کاملResidual dipolar (1)H-(1)H couplings of methyl groups in weakly aligned proteins.
Residual dipolar couplings measured for weakly aligned proteins provide important restraints for molecular structure determinations by NMR1 spectroscopy which cannot be obtained otherwise.2 Residual dipolar couplings are usually measured by comparing multiplet splittings measured in anisotropic phase with those measured in isotropic phase.2,3 In the absence of scalar couplings, a residual dipol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular NMR
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2002